ログイン 会員登録
icon_bulk_order一括注文 Acrobiosystems for English
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0-9
phone
Your Position: ホーム > Cell > Organoids > CIPC-DWC001

Human iPSC-Derived Dopamine Neurons

  • Product Details
    Human iPSC-Derived Dopamine Neurons are specialized cells capable of mimicking the properties of human dopamine neurons, crucial for various neurological studies. Our Human iPSC-Derived Dopamine Neurons are generated from human induced pluripotent stem cells (iPSCs) using a fully defined, proprietary differentiation protocol.
    These neurons are thoroughly characterized through immunocytochemistry, targeting well-known markers such as TH, and MAP2, ensuring their identity and functionality. They have been validated for their ability to function in electrophysiological assays and disease modeling.
    Additionally, our dopamine neurons are cryopreserved at an optimal stage of differentiation, guaranteeing their functionality and ability to be used directly from thaw. This ensures a consistent and reliable cell source for research on Parkinson's disease and other neurological disorders.
  • Product Specification
    Cryopreserved cells, shipped on dry ice. Each vial contains over 1 x 10^6 cells.
  • Storage

    Frozen in liquid nitrogen.

Validation Data
Marker Expression
 Organoids MARKER EXPRESSION

Human iPSC-Derived Neural Progenitor Cells (Cat. No. CIPC-NWC001) have the ability to differentiate into dopamine neurons (Cat. No. CIPC-DWC001) .

Functional Activity
 Organoids FUNCTIONAL ACTIVITY

Haloperidol-Induced Modulation of Neuronal Firing
This data set demonstrates the dose-dependent effects of Haloperidol on neuronal firing. Raster plots and associated firing parameters (for Weighted Mean Firing Rate, Number of Bursts, Burst Duration and Burst Frequency, n = 3; for Number of Network Bursts, n = 2) are presented for varying Haloperidol concentrations. At 0.1 μM, the firing activity is enhanced, while at 1 μM, the activity diminishes. At 10 μM, the firing is nearly abolished. These results are consistent with findings from Yokoi et al. (2019), where Haloperidol is known to inhibit D2 receptors at low doses and 5-HT2 receptors at high doses (Tyler et al., 2017). This confirms that the relevant receptors in our Human iPSC-Derived Dopamine Neurons are functioning normally, underscoring their utility in drug screening and neurotoxicity studies.

  • Clinical and Translational Updates

コメント (0)


ETD of in-stock products: 4 business days

価格(JPY) : Inquire

プロモーション&展示



データシート&ドキュメンテーション

関連製品一覧

新製品

お問い合わせ&コメント

This web search service is supported by Google Inc.

totopphone